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600 025. India 
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Abstract. The modified effective potential method for treating radial problems in the J W K B  

approximation is applied to the quartic oscillator defined by the potential V ( r )  = r4 .  The 
J W K B  quantisation condition for the energy W is shown to be expressible as (2n, + I ) n  = 

AW3/4+B+CW~3I4+DW-9/4  +0( W-’5’4). The /-dependent coefficients A, B, C and D 
are determined exactly by taking into account contributions from all orders. On inversion, 
the above series yields an explicit analytic formula for the energy levels. This formula is 
easily generalised to d dimensions, and found to reproduce known numerical eigenvalues 
extremely well. 

1. Introduction 

It has been known for a long time that in a J W K B  analysis of the radial Schrodinger 
equation, correct results are not obtained if one merely applies the one-dimensional 
JWKB formalism, taking as an  effective potential the sum of the true potential V ( r )  and  
the centrifugal barrier I ( I+ l ) /2r2 .  In such a treatment, one finds that the J W K B  

wavefunction has a behaviour near r = 0 that is not only different from that of the 
exact wavefunction, but also different in different orders of the approximation. Now, 
near the origin the exact wavefunction goes as r ’ + ’ ,  provided the potential V ( r )  is less 
singular at r = O  than C2.  This correct dependence can be obtained, in the lowest 
order of approximation, if one modifies the effective potential by replacing I ( I  + 1)  by 
(I +f)’. This is the well known Langer-Kemble modification. What is not well known 
is that this modification is correct only for the lowest order. When one considers higher 
orders of the approximation, it becomes necessary to make further modifications. I n  
a recent work we have considered this problem in some detail, and shown how to 
determine, in any order of the approximation, the modification of the effective potential 
that will lead to a J W K B  wavefunction with the correct behaviour near the origin 
(Seetharaman and Vasan 1984, hereafter referred to as I). When applied to the isotropic 
harmonic oscillator and  the Coulomb problems, our modified effective potential method 
yields, in both cases, the exact spectrum in every order of the approximation. 

In this work we apply the modified effective potential method to the three- 
dimensional quartic oscillator with the potential V ( r )  = r4, and carry out systematically 
a higher-order J W K B  analysis of the eigenvalue problem up to the fourth order. There 
is no difficulty in principle in extending the analysis to still higher orders. The energy 
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eigenvalues W are determined by the quantisation condition which is expressible as 

(2n, + l).n = f( W, 1) 

where n, and 1 are quantum numbers, and f is a sum of integrals which contain W as 
a parameter. These J W K B  integrals arise in different orders, and can all be evaluated 
in terms of complete elliptic integrals. Summing the contributions to f from all orders 
we show that f can be expanded as 

f = AW3/4+B+CWW-3/4+DW-9/4+O(W-'5!4) .  (1.1) 

All the coefficients in this expansion except A receive contributions from every order 
of the approximation. A is completely determined by the lowest order. We show that 
the contributions to B, C and D coming from all orders can be easily taken into 
account, which leads to the exact determination of these coefficients. We then invert 
the above expression, neglecting terms lower than W-9/4, and obtain an explicit analytic 
expression for W as a function of n, and 1. The formula for the energy levels thus 
obtained is found to reproduce known numerical results extremely well. With the 
simple replacement 1 + I + i ( d  - 3), the formula gives the energy levels of the quartic 
oscillator in d(> 1) dimensions. 

With reference to our results for the r4 potential, the following remarks may be 
noted. The present analysis is a distinct improvement over our earlier method for 
determining the energies, which was based on the lowest-order J W K B  approximation 
(Seetharaman er a1 1982). When 1 is set equal to zero, our expressions coincide with 
those of Pasupathy and Singh (1981) who have developed, for S-waves, a method for 
calculating higher-order J W K B  integrals and given explicit expressions, up to the second 
order, for power law potentials. Our formula is as accurate as (and for many levels 
slightly better than) the empirical formula of Mathews et a1 (1982) and has the additional 
virtue of being derivable from theory. For the quartic oscillator in d dimensions, our 
results are decidedly superior to the ones quoted by Hioe (1978) whose formula 
corresponds to retaining only A and B in (1.1). 

2. Quantisation formula for radial problems 

For a particle of unit mass moving in a spherically symmetric potential V(r), the 
quantisation condition for the energy W is given by (with h = 1) 

where n, is a nonnegative integer (the radial quantum number). This is a radial 
generalisation of the one-dimensional formula of Dunham (1932). (For application of 
Dunham's formula to one-dimensional potentials see Bender et a1 (1977).) The y,'s 
are the different terms in the J W K B  expansion of the radial wavefunction U :  

U = exp( i i y dr )  = exp( i 1 n = O  f (-i)"y, dr) .  

The expression for yo is 
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where the effective potential V,, is defined by 

v,, = V(r) + ~ , /2 r ’ .  

The other y,’s are to be found from the recurrence relation 

~ Y O Y ,  +dyn-I/dr+ C Y n y n - m  = O ,  n 3  1. 
n - l  

m = l  

2495 

(2.3b) 

As shown in I ,  L2 is a parameter dependent on 1 which takes different values in different 
orders of the J W K B  approximation. For potentials V( r )  satisfying r2 V( r) + 0 as r + 0, 
the values to be chosen for L in different orders of the approximation are as follows. 
In the lowest order (zeroth plus first) L = 1 -ti, while it is the root of the equation 
x + 1/8x = 1 +f ,  and x + 1/8x - 1/128x3 = 1 +& in the second and fourth orders of 
approximation respectively. When all orders of the J W K B  approximation are taken 
into account, its value is given by L2 = l ( l +  1). We assume that V(r) satisfies the above 
condition at the origin and that the problem admits only two classical turning points 
for physical values of W. These turning points are branch points of yo and hence of 
y. We shall take the r plane to be cut along the real axis between the two turning 
points. The contour in (2.1) goes around the two branch points and encloses the cut. 
For definiteness, we shall take the contour to be traversed in the clockwise direction. 
We must then choose the branch of yo that is positive real on the upper lip of the cut. 
Thus 

(2.5) yo = +(2 W - 2 ~ ( r )  - L2/ r2~’ r2 .  

Having determined yn’s (using (2.5) and (2.4)), we can calculate the integrals on the 
RHS of (2.1) in any given order of approximation. Clearly, to calculate the RHS of (2.1) 
in the fourth order of the approximation, it is enough to retain only terms up to n = 4 
in it. Of these terms, it is easy to see that there is no contribution from y,, since it can 
be expressed as a total derivative and therefore integrates to zero around the closed 
contour. Further, y l  is a logarithmic derivative, and its integral is easily evaluated 

y ,  d r  = -Ti, (2.6) # 
independent of V(r). Therefore the quantisation condition (in the fourth order) can 
be written as 

~ ( 2  n, + 1 ) = (yo  - y 2  + y4)  d r = IO + I2  + 14.  (2.7) f 
It is obvious that Io is given by 

Io= yo d r = J 2  Q’/’dr f -f 
with 

(2.9) 
Expressions for y 2  and y4 can be obtained from (2.4). Noting that total derivatives in 
the integrands integrate to zero over the closed contour, considerable simplification 
of the integrals can be effected by dropping such terms in y ,  and y,. The resulting 

Q = W - VeR. 
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expressions are found to be given by 

(2.10) 

14= - (h /6144)  (7Q-”2(Q”)2-2Q-5’2Q””) dr. (2.1 1) f 
Here a prime denotes differentiation. These expressions when used in (2.7) give the 
quantisation condition in the fourth order. We shall take up in 0 3 the explicit evaluation 
of the 1 ’ s  for the quartic oscillator. 

3. Application to the quartic oscillator 

In the case of the quartic oscillator defined by the potential V ( r )  = r4 ,  the J W K B  integrals 
I,, I ,  and I ,  can be expressed in terms of complete elliptic integrals. The classical 
turning points r l  and r2 are the positive roots of the equation 

W -  r4- ~ ~ / 2 r ’ =  0. 

For this problem it proves to be convenient to define the following new quantities 

R ( z )  = -z’ + Z  - U ,  (3.1) z=w-1/2 2 

U = L2/2 W3l2.  

r ,  

with 

(3 4 
The turning points z = a and z = b are then determined by the equation R(z) = 0, whose 
roots are 

2 4 + 4 T  2 4 + 2 T  
c =:cos -, 

J 3  3 J 3  3 J 3  3 
2 4  a = -- cos -, b = : COS-, (3.3) 

with cos 4 = -3J5u/2 .  It is easily checked that, for physical values of W, a > b > 0 > c. 

3.1. Evaluation of lo 

The lowest-order integral I ,  has been shown in Seetharaman et a1 (1982) to be 
expressible as 

(3.4) 

In this expression K = K ( k 2 )  and II = II(a*, k )  are complete elliptic integrals of the 
first and the third kinds, in the notation of Byrd and Friedman (1971). Further 

I ,  = J2 W3’4[(3 - a / c ) g K  + U( c - I  - b-’ )gI I] .  

g = 2( a - c ) - ” ~ ,  k 2  = ( a  - b ) / ( a  - c ) ,  a’ = ck2/ b. (3.5) 

3.2. Evaluation of I2 

In terms of z and R, the expression (2.10) for I 2  becomes 

1, = ( h / 3 2 )  W-3’4 dz R-3’2(2z2 +u/z) f 
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which can be written as 

The last step is obtained by dropping a total derivative. Noting that the above integrands 
have only integrable singularities at the turning points, the contour of integration can 
be deformed until it coincides with the upper and lower lips of the cut. We then get 

f d z R - ” ’ = 2  I a  dxR-’/’=ZgK 
b 

and 

Substituting these, we have the following expression for I,: 

3.3. Evaluation of I4 

It is convenient to write 

I 4  = I41 + I42  

where 

I 41 --LJ - 6144 2 f d r  Q-7/2(Q’t)2,  1 4 2  = && f d r  Q-5/2Qt‘t’. 

In terms of z and R(z) defined earlier, these integrals can be simplified as follows: 

dz[ -:R-5/2 + ( z  - ,)R-’l2 + ( u ~ / ~ z ) R - ~ / ’ ]  P ,- 
.[ - -I J2 w-9/4 

41 - 256 

As before, we have dropped some total derivative terms, and introduced derivatives 
with respect to c so that the integrands have only integrable singularities at the turning 
points. By a similar procedure 1 4 2  can be reduced to the form 

Adding 141 and 14,, and expressing the closed contour integrals as integrals along the 
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real axis from b to a, we get 

7 a3 
+ g ( a  - c ) E ]  

(3.7) 

Here E = E ( k Z )  is the complete elliptic integral of the second kind. 
All the integrals occurring in the fourth order of approximation have now been 

expressed in terms of complete elliptic integrals. Since the derivatives of K ,  E and II 
are again expressible as combinations of K ,  E, n, the entire RHS of (2.7) can be written 
as a linear combination of these. The resulting equation then determines W implicitly. 
While this equation can be solved numerically for the energies?, it is certainly of 
interest to consider how one can invert the highly implicit relation and obtain an 
explicit analytic expression for W. The inversion cannot of course be done exactly, 
but it proves possible to derive, by an approximate inversion, a simple formula which 
is found to work extremely well. 

4. Analytic formula for the energy 

In each of the integrals Io, Z2 and Z4, the energy W occurs only in the combination 
U = L2/2 W3l2, apart from an overall factor. For fixed L, U is small for large W Since 
the JWKB method is expected to be good for large quantum numbers (which in this 
case implies large values of W), we base our inversion procedure on an expansion of 
the JWKB integrals in powers of U. As Z4 has a W-9/4 outside as a factor, we carry the 
expansion of Io and Z2 up to terms of order W-9’4, in order to include contributions 
from the fourth-order integral. 

We start with the expansion of the roots a, b, c. For small U we get 

a - 1 - 1, 2 - lU2 8 - L U 3  2 ,  b - U +u3, c -  -1 -4u+ ;a2 - ;u3 .  

a 2  - - ( i / q i  - - yU2  + o ( ~ ~ ) ) ,  
These lead to the following: 

k 2 - 1 - 1  2 4 a ( l  +?u2), 

g -  J2( i  +kU2 + o ( ~ ~ ) ) .  
The expansions of K, E and II are given by 

K ( k 2 ) -  K -$(2E - K ) u  +&KU’-%(~E - K ) u 3  
E ( P ) - E - $ ( E - K ) u  +&(2K -3E)a2+&(38K -71E)a3, 

n(a2,  k)- &/ J i -2 (E  - R ) u -  “ G / J 2 - ( ; K  -tE)u2, 
where 

E K ( k 2  = 4) = 1.854 074 67, (4.1) 
and, by Legendre’s relation, 

2E  - K = $r(K)-I, 

t In such a calculation, the value of L appropriate to the fourth order should be used (cf 5 2). 
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Substituting these into the expressions for Io. I z  and I4 given in 0 3, we get the following 
expansions: 

- 
lo- w”‘[$K - 7 r J 2 u + ( 2 E - K ) u - & K u 2 ~ ,  

I2  - W-3/4[ - .rr/8JG - i (2E - K )  +gKu], 
14- w-9’4[7r/ 128(2u)3’2 +&E] .  

On substituting for U and adding like powers of W, the quantisation condition (2.7) 
becomes 

7r(2n, + 1) = - 7r(L + 1 /8  L - 1/ 1 2 8 ~ 3 )  +$K w3’4 +4(2E - E)(  LZ - t )  w-3’4 
+ (h + g ~2 - & L ~ ) K  W-9‘4 + O( W- 1514). (4.3) 

Note the presence of W-independent terms in (4.3) which come from each of the 
integrals Io ,  I ,  and 1,. Now, it is not difficult to convince oneself that higher-order 
integrals (when included) contribute to (4.3) as follows: the odd-order integrals 
vanish, and the even-order integrals are of the form 

Izn = -7rL(4LZ)-“ (;) +O( w-‘2“-”)* 

As shown in I, the constant terms in IZn are independent of the nature of the potential 
so long as r2V(r )+  0 as r + 0 and their sum to all orders of the approximation is 
-7rL(1 + 1/4L2)”2 which must be set equal to -r(I +;). This will be the constant term 
in (4.3) if contributions from all orders are included. Further, if terms lower than 

are neglected, the only other change in the RHS of (4.3) when all orders are w-9’4 

summed will be the replacement of Lz by l ( l+ 1). We thus get exact expressions for 
the first four terms on the R H S  of (4.3): 

The values of A, B, C and D in the case 1 = 0 are in agreement with those given by 
Bender er a1 (1977) for the one-dimensional quartic oscillator. 

The relation (4.4) is the basis for our analytical formula for the energy levels of 
the quartic oscillator in three dimensions. It follows from (4.4) that W can be written 
in the form 

W =  a l ( n  +2)4’3[1 +a,(n + Z ~ - ~ + a ~ ( n  . . .] (4.5) 

where n = 2n, + 1. A simple calculation shows that the a ,  determined by putting (4.5) 
in (4.4), can be expressed in terms of K and 1 alone. The values are 

a ,  = ( 3 ~ / 4 K ) ~ ’ ~ ,  ~ z = ( 9 ~ ) - ’ [ 1  -41(1+ l)], 

a3= - ( ~ / ~ I ~ ~ ) [ ~ ~ ’ + ~ K ~ + ( ~ K ~ -  7r2)1( i+ i )+(27rz-~K4)P(1+ 11~3. (4.6) 

The relations (4.5) and (4.6) provide an explicit analytical formula for the energy 
eigenvalues. The values of W predicted by this formula for different n and 1 values 
are given in table 1. The results are seen to be in excellent agreement with the highly 
accurate (to 1 part in IO”) numerical eigenvalues of Bhargava (1982). 
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Table 1. Comparison of the J W K B  energy values (equation (4.5)) with the exact energies 
for the three-dimensional quartic oscillator. 

we,,,, 
n 1 W J W K B t  (Bhargava 1982) 

0 0 2.399 2.393 644 
I 1 4.4782 4.478 039 
2 0 7.335 75 7.335 730 

2 6.829 6.830 308 
5 I 16.599 528 16.599 52 1 

3 16.0461 16.046 193 
5 15.085 15.08 1 647 

I O  0 35.740 314 35.740315 
4 34.980 19 34.980 152 

I O  31.71 3 1.690 628 

50 0 263.750914 263.750919 
20 257.891 257.889 588 
50 229.7 229.437 335 

t The values are given only up to the decimal place where they begin to deviate from the 
exact ones. 

5. Application to quartic oscillator in d dimensions 

The quartic oscillator in d dimensions is characterised by the potential 

The reduced Schrodinger equation in the variable r is 

d2u/dr2+2{ W-r4-[l+i(d-3)][1+i(d- 1)]/2r2)u = O  

(Hioe 1978). I t  is therefore clear that our analysis will go through for d dimensions 
with the trivial change of 1 to I + f ( d - 3 )  which induces the change n +:+ n + d / 2 .  
With these replacements, (4.5) and (4.6) give the energy levels of the d-dimensional 
quantic oscillator. In table 2 we present some results for the case d = 2. 

6. Discussion 

It is clear from our analysis that higher-order JWKB integrals for the pure quartic 
oscillator can be expressed in terms of complete elliptic integrals. In this work we 
have given the explicit expressions of these integrals in the fourth order of the JWKB 

approximation. Our analysis is based on the modified effective potential method, the 
details of which were outlined in an earlier paper (Seetharaman and Vasan 1984). The 
fact that all the J W K B  integrals are closed contour integrals enables us to simplify the 
integrals considerably (by dropping total derivatives from integrands, etc) before they 
are expressed as convergent real integrals. Had the higher-order integrals been taken 
as real integrals to start with, suitable regularisations would have been necessary (see 
e.g. Pasupathy and Singh 1981 for S-waves). The results for the three-dimensional 
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Table2. Comparison of the JWKB energy values with the exact energies for the two- 
dimensional quartic oscillator. 

we,,,, 
n I w,,,, (Bhargava 1982) 

0 0 
1 1 
2 0 

2 
5 1 

3 
5 

10 0 
4 

I O  

50 0 
20 
50 

1.485 
3.400 
6.0032 
5.6235 

14.977 82 
14.5085 
13.603 

33.694 277 
33.066 919 
29.92 

260.345 80 
254.727 
226.1 

1.477 150 
3.398 150 
6.003 386 
5.624 339 

14.977 808 
14.508 675 
13.600 878 

33.694 280 
33.066 978 
29.899 842 

260.345 8 I3 
254.725 806 
226.484 799 

oscillator are easily extended to d dimensions by a suitable change of the parameters 
n and 1. 

The final formula for the energy levels yields very good results even for low values 
of n, the error being only about 0.2% even for the ground state. For levels with n = I ,  
the results are again found to be good, although the parameter (+ is not too small 
(-0.3) for these levels. A consequence of our formula is that the energy decreases 
with 1 for a given n. For fairly low values of 1, the splitting is proportional to 1 ( 1  + 1) 
for d = 3, and to 1’ for d = 2 .  This point was noted by Bell et a1 (1970) from their 
numerical results. 

The higher-order J W K B  analysis of radial problems can also be carried out by a 
different method advocated by Krieger and  Rosenzweig (1967). In this method the 
Langer transformation is first applied to the radial equation so that the problem becomes 
truly one-dimensional, with the new independent variable ranging from -m to +W. 

The method of Dunham is then applied to this one-dimensional equation to write 
down the higher-order J W K B  integrals occurring in the quantisation condition. These 
integrals are then re-expressed in terms of the radial variable r. In this formalism, the 
centrifugal barrier parameter l ( l +  1)  is transformed to ( I  ++)’ and remains the same in 
every order. The expressions for the higher-order corrections are rather complicated, 
and they cannot be written down in terms of an  effective potential. Regarding the 
equivalence of the two methods, the following observations may be noted. If only the 
lowest-order approximation is considered, the two methods yield identical results for 
any potential. When higher orders are included, it is not obvious whether the two 
methods are equivalent. In the context of the quartic oscillator, we find that the 
higher-order integrals yield different expressions, which shows that the energies (when 
numerically calculated) will be slightly different. This point has been noted earlier by 
Froman and Froman (1974). However, when an asymptotic expansion for the energy 
is made, the method of Krieger and rtosenzweig yields a series which is identical to 
the one defined by (4.5) and  (4.6). The details of this calculation are outlined in the 
appendix. 
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Appendix. The method of Krieger and Rosenzweig 

In the method of Krieger and Rosenzweig (1967), the energy eigenvalues are determined 
by quantisation condition which, in the fourth order JWKB approximation for V(r) = r4, 
reads 

(2n, + 1 ) ~  = Jo + J2 + J4 

where 

J 2 =  -(1/32J2) d r  r(dG/dr)2G-S/2, f 
with 

G = r2( W - r4) - f (  1 +$)' 

The contour of integration in the above is the same as that described earlier. 
The integral Jo is trivially written down, as it is the same as Io, (2 .Q except that 

L2 in Io should be replaced by (1+f)'. J2 and J4 can be considerably simplified by 
dropping total derivatives from the integrands. After a suitable change of variable and 
some labour, J2 and J4 can be expressed as 

J2 = ( w-3/4/6J2)(a/ap) dz f 
where 

p = (1 + ;)2/2 w3y S(z)= - z 3 + z - p .  

All the above integrals are expressible in terms of complete elliptic integrals. Expanding 
the latter integrals in powers of p one obtains 

Jo-  W3'4[ - .rrJp+$R +(2E - R ) p  -&Kp2], 

J2 - W-3/4[ -&E - E) +&,&I, 
J4 - W-9/4( -&E) .  

Adding these, the quantisation condition becomes 

.rr(2nr + l)=$RW3/4- T ( l  +f) +f[ - ; + ( I  +f)2](2E - R) w-3/4 
+[-g'i+&(l+f)2-&(1+f)4]RW-9'4+ . . . .  

It is easily checked that this is identical to (4.4). Consequently, one will get the same 
asymptotic series for the energy as the one described in the text ((4.5) and (4.6)). 
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